Response of the Separated Western Boundary Current to Harmonic and Stochastic Wind Stress Variations in a 1.5-Layer Ocean Model

Author:

Sirven J.1

Affiliation:

1. Laboratoire d’Océanographie Dynamique et de Climatologie, UMR:IPSL/MNHN/UPMC/CNRS/IRD, Université Pierre et Marie Curie, Paris, France

Abstract

Abstract A time-dependent version of the Parsons model (geostrophic 1.5-layer model of the ventilated thermocline) has been developed to investigate the response of the midlatitude ocean to wind stress variations in a simple configuration. In this model, the total amount of water is kept constant and the eastern boundary thermocline depth can vary in time so as to maintain mass balance. Here, basin modes are not investigated, in contrast to many recent studies, but the emphasis is on the line where the motionless second layer outcrops, which represents the separated western boundary current. It is shown that the position of this line only depends on the wind stress, the earth rotation, and the thermocline interior solution. The position is not influenced by the parameterization of the dissipative processes. This generalizes previous results established in the stationary case. The displacement of the outcrop line in the case of harmonic or stochastic wind stress variations is computed numerically, showing a lag of 0–4 yr that results from a combination of the instantaneous Ekman response and the delayed response due to Rossby wave propagation. Such delay is in satisfactory agreement with observations of Gulf Stream adjustment to wind stress changes, considering the limitations of the model, and is in good agreement with intermediate-resolution OGCM models. Although inertial effects and buoyancy forcing also need to be considered, this suggests that the outcropping mechanism plays a role in the variability of the separated boundary currents and may be dominant in non-eddy-resolving ocean models.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic Forcing of Ocean Variability by the North Atlantic Oscillation;Journal of Physical Oceanography;2009-01-01

2. Gulf Stream Variability in Five Oceanic General Circulation Models;Journal of Physical Oceanography;2006-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3