The Relative Importance of Scavenging, Oxidation, and Ice-Phase Processes in the Production and Wet Deposition of Sulfate

Author:

Spiridonov Vlado1,Curic Mladjen2

Affiliation:

1. Institute of Physics—Meteorology, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, Skopje, Macedonia

2. Institute of Meteorology, Belgrade University, Belgrade, Serbia

Abstract

Abstract The relative importance of various processes to sulfate production and wet deposition is examined by using a cloud-resolving model coupled with a sulfate chemistry submodel. Results using different versions of the model are then compared and principal differences with respect to their dynamics, microphysics, and chemistry are carefully discussed. The results imply that the dominant microphysical and chemical conversions of sulfate in the 3D run are nucleation, scavenging, and oxidation. Due to the lower cloud water and rainwater pH, oxidation does not contribute as significantly to the sulfate mass in the 2D run as the 3D. Sensitivity tests have revealed that in-cloud scavenging in the 2D run for continental nonpolluted and continental polluted clouds accounted for 29.4% and 31.5% of the total sulfur deposited, respectively. The 3D run shows a lower percentage contribution to sulfur deposition for about 28.2% and 29.6%. In addition, subcloud scavenging for the 2D run contributed about 32.7% and 38.2%. In-cloud oxidation in the 2D run accounted for about 24.5% to 30.4% of the total sulfur mass deposited. Subcloud oxidation contributed from 21.0% to 20.6% of the total sulfur mass removed by wet deposition. In-cloud oxidation for the 3D run shows slightly lower percentage values when compared to those from the 2D run. The relative contribution of subcloud oxidation for continental nonpolluted and polluted clouds exceeds those values in the 2D run by approximately 7% and 10%, respectively. Ignoring the ice phase and considering those types of convective clouds in the 2D run may lead to a higher value of the total sulfur mass removed by the wet deposition of about 33.9% to 39.2% for the continental nonpolluted and 36.2% to 45.6% for the continental polluted distributions relative to the base runs.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3