Temperature Dependence of Evaporation Coefficient for Water Measured in Droplets in Nitrogen under Atmospheric Pressure

Author:

Jakubczyk D.1,Zientara M.1,Kolwas K.1,Kolwas M.1

Affiliation:

1. Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Abstract

Abstract The evaporation and the thermal accommodation coefficients for water in nitrogen were investigated by means of the analysis of evaporation of pure water droplet as a function of temperature. The droplet was levitated in an electrodynamic trap placed in a climatic chamber. The levitation time was in the range of seconds, which corresponds to the characteristic time scales of cloud droplet growth. Droplet radius evolution and evaporation dynamics were studied as a function of temperature, by analyzing the angle-resolved light scattering Mie interference patterns. A model of droplet evolution, accounting for the kinetic effects near the droplet surface, was applied. The evaporation coefficient for the temperature range from 273.6 to 298.3 K was found to be between 0.054 and 0.12 with a minimum of 0.036 ± 0.015 seemingly coinciding with water maximum density at 277.1 K. The average value of thermal accommodation coefficient over the temperature range from 277 to 289 K was found to be 0.7 ± 0.2.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference47 articles.

1. A model for particle microphysics, turbulent mixing, and radiative transfer in the stratocumulus-topped marine boundary layer and comparisons with measurements.;Ackerman;J. Atmos. Sci.,1995

2. Absorption and Scattering of Light by Small Particles.;Bohren,1983

3. Particles in the Atmosphere and Space.;Cadle,1966

4. Kinetic limitations on droplet formation in clouds.;Chuang;Nature,1997

5. Mass accommodation coefficient of water vapor on liquid water.;Davidovits;Geophys. Res. Lett.,2004

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3