Eddy-induced Heat Transport in the South China Sea

Author:

Ding Ruibin1,Xuan Jiliang12,Zhang Tao3,Zhou Lei41,Zhou Feng14,Meng Qicheng1,Kang In-Sik14

Affiliation:

1. 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

2. 4 Lab of Marine Ecological Environment Monitoring and Prediction, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China

3. 2 Institute of Polar and Ocean Technology, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

4. 3 Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China

Abstract

AbstractEddy-induced heat transport (EHT) in the South China Sea (SCS) is important for the heat budget. However, knowledge of its variability is limited owing to discrepancies arising from the limitation of the down-gradient method and uncertainties arising from numerical models. Herein, we investigated the spatiotemporal variability and dynamics of EHT using a well-validated assimilated model. In particular, to the southeast of Vietnam (SEV) and west of Luzon Strait (WLS), significant values of annual mean EHT are observed and most EHT is confined in the upper 400 m. EHT also exhibits significant seasonality, and the largest EHT amplitude in autumn at SEV is mainly driven by the wind stress curl, while that in winter at WLS is mainly related to the Kuroshio intrusion. Energy budget analysis reveals that both the barotropic and baroclinic instabilities increase the eddy kinetic energy in autumn at SEV, whereas only the barotropic instability contributes to the eddy kinetic energy at WLS in winter. Specially, an up-gradient EHT is observed at WLS in all four seasons, characterized by the same directions between EHT and mean temperature gradient. The up-gradient EHT at WLS is induced by the baroclinic instability through an inverse energy transfer, which is generated by the interaction between the Kuroshio intrusion and topography below the surface layer. Moreover, the most significant up-gradient EHT in winter shows a wave-like southwestward propagating pattern in the subsurface layer.

Publisher

American Meteorological Society

Subject

Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3