A New Parameter to Assess Impact of Rain Gauge Density on Uncertainty in the Estimate of Monthly Rainfall over India

Author:

Prakash Satya1ORCID,Seshadri Ashwin2,Srinivasan J.1,Pai D. S.3

Affiliation:

1. Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India

2. Divecha Centre for Climate Change, and Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bengaluru, India

3. India Meteorological Department, Pune, India

Abstract

Abstract Rain gauges are considered the most accurate method to estimate rainfall and are used as the “ground truth” for a wide variety of applications. The spatial density of rain gauges varies substantially and hence influences the accuracy of gridded gauge-based rainfall products. The temporal changes in rain gauge density over a region introduce considerable biases in the historical trends in mean rainfall and its extremes. An estimate of uncertainty in gauge-based rainfall estimates associated with the nonuniform layout and placement pattern of the rain gauge network is vital for national decisions and policy planning in India, which considers a rather tight threshold of rainfall anomaly. This study examines uncertainty in the estimation of monthly mean monsoon rainfall due to variations in gauge density across India. Since not all rain gauges provide measurements perpetually, we consider the ensemble uncertainty in spatial average estimation owing to randomly leaving out rain gauges from the estimate. A recently developed theoretical model shows that the uncertainty in the spatially averaged rainfall is directly proportional to the spatial standard deviation and inversely proportional to the square root of the total number of available gauges. On this basis, a new parameter called the “averaging error factor” has been proposed that identifies the regions with large ensemble uncertainties. Comparison of the theoretical model with Monte Carlo simulations at a monthly time scale using rain gauge observations shows good agreement with each other at all-India and subregional scales. The uncertainty in monthly mean rainfall estimates due to omission of rain gauges is largest for northeast India (~4% uncertainty for omission of 10% gauges) and smallest for central India. Estimates of spatial average rainfall should always be accompanied by a measure of uncertainty, and this paper provides such a measure for gauge-based monthly rainfall estimates. This study can be further extended to determine the minimum number of rain gauges necessary for any given region to estimate rainfall at a certain level of uncertainty.

Funder

Department of Science and Technology, Government of India

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3