Modeling the Snowpack Energy Balance during Melt under Exposed Crop Stubble

Author:

Harder Phillip1,Helgason Warren D.2,Pomeroy John W.1

Affiliation:

1. Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

2. Centre for Hydrology, and Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract

Abstract On the Canadian Prairies, agricultural practices result in millions of hectares of standing crop stubble that gradually emerges during snowmelt. The importance of stubble in trapping wind-blown snow and retaining winter snowfall has been well demonstrated. However, stubble is not explicitly accounted for in hydrological or energy balance snowmelt models. This paper relates measurable stubble parameters (height, width, areal density, and albedo) to the snowpack energy balance and snowmelt with the new, physically based Stubble–Snow–Atmosphere Model (SSAM). Novel process representations of SSAM quantify the attenuation of shortwave radiation by exposed stubble, the sky and vegetation view factors needed to solve longwave radiation terms, and a resistance scheme for stubble–snow–atmosphere fluxes to solve for surface temperatures and turbulent fluxes. SSAM results were compared to observations of radiometric snow-surface temperature, stubble temperature, snow-surface solar irradiance, areal-average turbulent fluxes, and snow water equivalent from two intensive field campaigns during snowmelt in 2015 and 2016 over wheat and canola stubble in Saskatchewan, Canada. Uncalibrated SSAM simulations compared well with these observations, providing confidence in the model structure and parameterization. A sensitivity analysis conducted using SSAM revealed compensatory relationships in energy balance terms that result in a small increase in net snowpack energy as stubble exposure increases.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Research Chairs

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3