Use of Daily Station Observations to Produce High-Resolution Gridded Probabilistic Precipitation and Temperature Time Series for the Hawaiian Islands

Author:

Newman Andrew J.1,Clark Martyn P.1,Longman Ryan J.2,Gilleland Eric1,Giambelluca Thomas W.2,Arnold Jeffrey R.3

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. Department of Geography and Environment, University of Hawai‘i at Mānoa, Honolulu, Hawaii

3. Climate Preparedness and Resilience Program, U. S. Army Corps of Engineers, Seattle, Washington

Abstract

Abstract It is a major challenge to develop gridded precipitation and temperature estimates that adequately resolve the extreme spatial gradients present in the Hawaiian Islands. The challenge is particularly pronounced because the available station networks are irregularly spaced and sparse, creating large uncertainties in gridded spatial meteorological estimates. Here a 100-member, daily ensemble of precipitation and temperature estimates over the Hawaiian Islands for the period 1990–2014 at 1-km grid resolution is developed. First, an intermediary ensemble estimate of the monthly climatological precipitation and temperature is created, and those climatological surfaces are used to inform daily anomaly interpolation. This climatologically aided interpolation (CAI) method extends our initial ensemble system developed for the continental United States. This study demonstrates that direct interpolation of daily precipitation values is inferior to the CAI methodology, particularly over longer time periods (from years to decades). Daily interpolation performs better for short time periods (e.g., 1 month or less) or when the precipitation distribution substantially diverges from climatology. The CAI ensemble is able to reproduce observed precipitation and temperature patterns, including precipitation occurrence. Leave-one-out cross-validation results illustrate that the ensemble has 1) minimal bias for precipitation and temperature; 2) a mean absolute error of 2.5 mm day−1, 1.0 K, and 2.2 K for precipitation and mean and diurnal temperature, respectively; 3) a mean absolute error of 3.3 mm day−1 for the standard deviation of precipitation; and 4) nearly unbiased probability distributions across multiple thresholds of precipitation intensity. Additionally, the ensemble provides estimates of uncertainty across the distributions with increasing uncertainty for higher percentiles.

Funder

U. S. Army Corps of Engineers, Climate Preparedness and Resilience Program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3