On the Observed Inverse Relationship between Rainfall Amount and Dissolved Mineral Content

Author:

Stout John E.1ORCID

Affiliation:

1. USDA-Agricultural Research Service, Lubbock, Texas

Abstract

Abstract Rainfall samples collected on the high plains of West Texas exhibit a high degree of variability with respect to the concentration of dissolved solids. That such variations should occur is to be expected, but there remains some uncertainty regarding factors that influence the ionic composition of individual samples. Measurements often show a distinct decrease in concentration with increasing precipitation amount. The reason for this inverse relationship is not intuitively obvious; however, it can be explained from a theoretical perspective. A theory was proposed that describes the concentration of dissolved solids in a collected rainfall sample. The theoretical basis of the derived equation rests upon fundamental principles of conservation of fluid volume and conservation of mass. This equation, which provides valuable insight into the process, suggests that if the rain sampling tube is absolutely clean at the start of a rain event, then the rainfall sample will not be altered by its collection and, therefore, will provide a true measure of rainfall chemistry. However, if windblown dust or other impurities are allowed to deposit in the rain gauge prior to or during the early stages of a rain event, then the concentration of dissolved solids can be very large for small sample volumes and not at all representative of the true concentration within the rain cloud. Results suggest that impurities in the rain sample can be appreciably diluted by the addition of relatively pure rainwater such that the concentration will asymptotically approach the true concentration as the rainfall sample volume increases.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference19 articles.

1. Tracking U.S. ground water: Reserves for the future?;Alley;Environment,2006

2. Chemistry of rain events in West Africa: Evidence of dust and biogenic influence in convective systems;Desboeufs;Atmos. Chem. Phys.,2010

3. Composition of atmospheric precipitation. I. Nitrogen compounds;Eriksson;Tellus,1952

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3