Bayesian Assimilation of Multiscale Precipitation Data and Sparse Ground Gauge Observations in Mountainous Areas

Author:

Wang Yuhan1,Chen Jinsong2,Yang Dawen3

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, and Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California

2. Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California

3. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

Abstract

Abstract Estimating the spatial distribution of precipitation is important for understanding ecohydrological processes at catchment scales. However, this estimation is difficult in mountainous areas because ground-based observation stations are often sparsely located and do not represent the spatial variability of precipitation. In this study, we develop a Bayesian assimilation method based on data collected on the Tibetan Plateau from 1980 to 2014 to estimate monthly and daily precipitation. To accomplish this, point-scale ground meteorological observations are combined with large-scale precipitation data such as satellite observations or reanalysis data. First, we remove the terrain effects from ground observations by fitting the precipitation data as functions of elevation, and then we spatially interpolate the residuals to 5-km-resolution grids to obtain monthly and daily precipitation. Additionally, we use Tropical Rainfall Measuring Mission (TRMM) satellite observations and ERA-Interim reanalysis data. Cross-validation methods are used to evaluate our method; the results show that our method not only captures the change in precipitation with terrain but also significantly reduces the associated uncertainty. The improvements are more evident in the main river source areas on the edge of the Tibetan Plateau, where elevation changes dramatically, and in high-altitude areas, where the ground gauges are sparse compared with those in low-altitude areas. Our assimilation method is applicable to other regions and is particularly useful for mountainous watersheds where ground meteorological stations are sparse and precipitation is considerably influenced by terrain.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3