Atmospheric River Families: Definition and Associated Synoptic Conditions

Author:

Fish Meredith A.1ORCID,Wilson Anna M.1,Ralph F. Martin1

Affiliation:

1. Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract Atmospheric rivers (ARs) can cause flooding when they are strong and stall over an already wet watershed. While earlier studies emphasized the role of individual, long-duration ARs in triggering floods, it is not uncommon for floods to be associated with a series of ARs that strike in close succession. This study uses measurements from an atmospheric river observatory at Bodega Bay (BBY), in Northern California, to identify periods when multiple AR events occurred in rapid succession. Here, an AR “event” is the period when AR conditions are present continuously at BBY. An objective method is developed to identify such periods, and the concept of “AR families” is introduced. During the period studied there were 228 AR events. Using the AR family identification method, a range of aggregation periods (the length of time allowed for ARs to be considered part of a family) was tested. For example, for an aggregation period of 5 days, there were 109 AR families, with an average of 2.7 ARs per family. Over a range of possible aggregation periods, typically there were 2–6 ARs per family. Compared to single AR events, the synoptic environment of AR families is characterized by lower geopotential heights throughout the midlatitude North Pacific, an enhanced subtropical high, and a stronger zonal North Pacific jet. Analysis of water year 2017 demonstrated a persistent geopotential height dipole throughout the North Pacific and a positive anomaly of integrated water vapor extending toward California. AR families were favored when synoptic features were semistationary.

Funder

Engineer Research and Development Center

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference55 articles.

1. Life cycle of cyclones and the polar front theory of atmospheric circulation;Bjerknes;Geophys. Publ.,1922

2. On the dynamics of a storm track;Chang;J. Atmos. Sci.,1993

3. On energy flux and group velocity of waves in baroclinic flows;Chang;J. Atmos. Sci.,1994

4. Atmospheric rivers as drought busters on the U.S. West Coast;Dettinger;J. Hydrometeor.,2013

5. Atmospheric rivers, floods and the water resources of California;Dettinger;Water,2011

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3