Affiliation:
1. Center for Western Weather and Water Extremes, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
Abstract
Abstract
Atmospheric rivers (ARs) can cause flooding when they are strong and stall over an already wet watershed. While earlier studies emphasized the role of individual, long-duration ARs in triggering floods, it is not uncommon for floods to be associated with a series of ARs that strike in close succession. This study uses measurements from an atmospheric river observatory at Bodega Bay (BBY), in Northern California, to identify periods when multiple AR events occurred in rapid succession. Here, an AR “event” is the period when AR conditions are present continuously at BBY. An objective method is developed to identify such periods, and the concept of “AR families” is introduced. During the period studied there were 228 AR events. Using the AR family identification method, a range of aggregation periods (the length of time allowed for ARs to be considered part of a family) was tested. For example, for an aggregation period of 5 days, there were 109 AR families, with an average of 2.7 ARs per family. Over a range of possible aggregation periods, typically there were 2–6 ARs per family. Compared to single AR events, the synoptic environment of AR families is characterized by lower geopotential heights throughout the midlatitude North Pacific, an enhanced subtropical high, and a stronger zonal North Pacific jet. Analysis of water year 2017 demonstrated a persistent geopotential height dipole throughout the North Pacific and a positive anomaly of integrated water vapor extending toward California. AR families were favored when synoptic features were semistationary.
Funder
Engineer Research and Development Center
Publisher
American Meteorological Society
Reference55 articles.
1. Life cycle of cyclones and the polar front theory of atmospheric circulation;Bjerknes;Geophys. Publ.,1922
2. On the dynamics of a storm track;Chang;J. Atmos. Sci.,1993
3. On energy flux and group velocity of waves in baroclinic flows;Chang;J. Atmos. Sci.,1994
4. Atmospheric rivers as drought busters on the U.S. West Coast;Dettinger;J. Hydrometeor.,2013
5. Atmospheric rivers, floods and the water resources of California;Dettinger;Water,2011
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献