Estimation and Extrapolation of Climate Normals and Climatic Trends

Author:

Livezey Robert E.1,Vinnikov Konstantin Y.2,Timofeyeva Marina M.3,Tinker Richard4,van den Dool Huug M.4

Affiliation:

1. Climate Services Division, Office of Climate, Water, and Weather Services, National Weather Service, National Oceanic and Atmospheric Administration, Silver Spring, Maryland

2. Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

3. University Corporation for Atmospheric Research, Silver Spring, Maryland

4. Climate Prediction Center, National Centers for Environmental Prediction, National Weather Service, National Oceanic and Atmospheric Administration, Camp Springs, Maryland

Abstract

AbstractWMO-recommended 30-yr normals are no longer generally useful for the design, planning, and decision-making purposes for which they were intended. They not only have little relevance to the future climate, but are often unrepresentative of the current climate. The reason for this is rapid global climate change over the last 30 yr that is likely to continue into the future. It is demonstrated that simple empirical alternatives already are available that not only produce reasonably accurate normals for the current climate but also often justify their extrapolation to several years into the future. This result is tied to the condition that recent trends in the climate are approximately linear or have a substantial linear component. This condition is generally satisfied for the U.S. climate-division data. One alternative [the optimal climate normal (OCN)] is multiyear averages that are not fixed at 30 yr like WMO normals are but rather are adapted climate record by climate record based on easily estimated characteristics of the records. The OCN works well except with very strong trends or longer extrapolations with more moderate trends. In these cases least squares linear trend fits to the period since the mid-1970s are viable alternatives. An even better alternative is the use of “hinge fit” normals, based on modeling the time dependence of large-scale climate change. Here, longer records can be exploited to stabilize estimates of modern trends. Related issues are the need to avoid arbitrary trend fitting and to account for trends in studies of ENSO impacts. Given these results, the authors recommend that (a) the WMO and national climate services address new policies for changing climate normals using the results here as a starting point and (b) NOAA initiate a program for improved estimates and forecasts of official U.S. normals, including operational implementation of a simple hybrid system that combines the advantages of both the OCN and the hinge fit.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3