Does Air Pollution Really Suppress Precipitation in Israel?

Author:

Alpert P.1,Halfon N.2,Levin Z.1

Affiliation:

1. Department of Geophysics and Planetary Sciences, Tel Aviv University, Tel Aviv, Israel

2. Department of Geography, Haifa University, Haifa, Israel

Abstract

Abstract Trends in the orographic rainfall ratio R0 over Israel are reevaluated. It is shown that the rainfall has not changed significantly over most of the mountainous stations, with some significant increases over the central mountains. The overall evaluation of R0 for all potential station pairs, calculating the ratio of each mountain station separately over each coastal or seashore station, indicates that about 50% of all pairs show a positive trend in R0. The high spatial variability, especially over the mountains, allows for finding orographic rainfall ratio trends that are significant in both the positive and negative directions. The correct definition of R0 in the Israeli case requires the use of a seashore cluster of stations. If some of the seashore stations are replaced by inland stations, and in particular stations that are right over the region of maximum positive rainfall urban enhancement due to the thermal heat island or other urban effects, a seemingly decreasing “orographic ratio” is unavoidable. In such a case, urban dynamical positive effects on coastal rainfall can be erroneously interpreted as pollution suppression of orographic rainfall. When seashore stations are selected as required by a proper definition of the orographic ratio, increasing R0 is obtained over central Israel and an insignificant trend over the north is found. Furthermore, evaluation of the ratio of rainfall for the upwind in comparison with the downwind side of the Galilee Mountains exhibits an increasing trend, opposite to the recent findings of Givati and Rosenfeld. The rainfall analysis shows no evidence of any suppression of rainfall over the mountains due to pollution, and at least in Israel other factors besides aerosols are predominant in defining the trends in the orographic rainfall ratio.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference32 articles.

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3