Combined Observational and Model Investigations of the Z–LWC Relationship in Stratocumulus Clouds

Author:

Khain A.1,Pinsky M.1,Magaritz L.1,Krasnov O.2,Russchenberg H. W. J.2

Affiliation:

1. The Hebrew University of Jerusalem, Jerusalem, Israel

2. International Research Centre for Telecommunications-transmission and Radar, Faculty of Information Technology and Systems, Delft University of Technology, Delft, Netherlands

Abstract

Abstract In situ measurements indicate the complexity and nonunique character of radar reflectivity–liquid water content (Z–LWC) relationships in stratocumulus and cumulus clouds. Parameters of empirical (statistical) Z–LWC dependences vary within a wide range. Respectively, the accuracy of retrieval algorithms remains low. This situation is partially related to the fact that empirical algorithms and parameters are often derived without a corresponding understanding of physical mechanisms responsible for the formation of the Z–LWC diagrams. In this study, the authors investigate the processes of formation of the Z–LWC relationships using a new trajectory ensemble model of the cloud-topped boundary layer (BL). In the model, the entire volume of the BL is covered by Lagrangian parcels advected by a turbulent-like velocity field. The time-dependent velocity field is generated by a turbulent model and obeys the correlation turbulent laws. Each Lagrangian parcel represents the “cloud parcel model” with an accurate description of processes of diffusion growth–evaporation of aerosols and droplets and droplet collisions. The fact that parcels are adjacent to each other allows one to calculate sedimentation of droplets and precipitation (drizzle) formation. The characteristic parcel size is 50 m; the number of parcels is 1840. The model calculates droplet size distributions (DSDs), as well as their moments (e.g., aerosol and drop concentration, mass content, radar reflectivity) in each parcel. In the course of the model integration, Z–LWC relationships are calculated for each parcel, as well as the scattering diagram including all parcels. The model reproduces in situ observed types of the Z–LWC relationships. It is shown that different regimes represent different stages of cloud evolution: diffusion growth, beginning of drizzle formation, and stage of heavy drizzle, respectively. The large scattering of the Z–LWC relationships is found to be an inherent property of any drizzling cloud. Different zones on the Z–LWC diagram are related to cloud volumes located at different levels within a cloud and having different DSD. This finding allows for improvement of retrieval algorithms.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3