The Impact of Aerosols on the Summer Rainfall Frequency in China

Author:

Choi Yong-Sang1,Ho Chang-Hoi1,Kim Jinwon2,Gong Dao-Yi3,Park Rokjin J.1

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea

2. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

3. College of Resources Science and Technology, Beijing Normal University, Beijing, China

Abstract

Abstract The authors investigate the short-term relationship between aerosol concentrations and summer rainfall frequency in China using the daily surface observations of particulate matters with a diameter of less than 10 μm (PM10) mass concentration, rainfall, and satellite-observed cloud properties. Results in this study reveal that on the time scale of a few days aerosol concentration is positively correlated with the frequency of moderate-rainfall (10–20 mm day−1) days but is negatively correlated with the frequency of light-rainfall (<5 mm day−1) days. Satellite observations of cloud properties show that higher aerosol concentrations are positively correlated with the increase in mixed cloud amount, cloud effective radius, cloud optical depth, and cloud-top heights; this corresponds to the decrease in low-level liquid clouds and the increase in midlevel ice–mixed clouds. Based on this analysis, the authors hypothesize that the increase in aerosol concentration results in the increase in summer rainfall frequency in China via enhanced ice nucleation in the midtroposphere. However, over the past few decades, observations show an increasing long-term trend in aerosol concentration but decreasing trends in summer rainfall frequency and relative humidity (RH) in China. Despite the short-term positive relationship between summer rainfall frequency and aerosol concentration found in this study, the long-term variations in summer rainfall frequency in China are mainly determined by other factors including RH variation possibly caused by global and regional climate changes. A continuous decrease in RH resulting in less summer rainfall frequency may further enhance aerosol concentrations in the future in conjunction with the increase in the anthropogenic emissions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3