Southeast Asian Pressure Surges and Significant Events of Atmospheric Mass Loss from the Northern Hemisphere, and a Case Study Analysis

Author:

Carrera Marco L.1,Gyakum John R.1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Abstract

Abstract A recent study of significant events of atmospheric mass depletion from the Northern Hemisphere (NH) during the extended boreal winter indicated that Southeast Asian pressure surges were an important physical mechanism that acted to channel the atmospheric mass equatorward out of the NH on a rapid time scale. This study builds upon this finding and examines both the direct and indirect roles of Southeast Asian pressure surges for a particular event of dry atmospheric mass depletion from the NH. The focus of this study is on the enhanced interhemispheric interactions and associated Southern Hemisphere (SH) tropical and extratropical responses resulting from the pressure surges. First, this study examines the conservation of dry atmospheric mass (i.e., the relationship between the dry meridional winds and the area-integrated dry air surface pressure) in the NCEP reanalysis for the 25 significant events of dry atmospheric mass depletion from the NH. Results indicate that the NCEP dry meridional winds are able to qualitatively capture the dry atmospheric mass evacuation from the NH. In a quantitative sense there is very good agreement between the wind and pressure data in the extratropics of both hemispheres. A distinct negative or southward bias in the NCEP vertically and zonally integrated dry meridional winds is apparent between 5° and 17.5°N. This southward bias was not present in the ECMWF Re-Analysis. The source of the southward bias in NCEP appears to result from a weaker analyzed ITCZ. The particular case of dry atmospheric mass depletion from the NH examined in detail is associated with an intense pressure surge over Southeast Asia. A significant enhancement of convection in the monsoon trough region of northern Australia occurs roughly 4 days after the peak intensity of the Siberian high. A low-level westerly wind burst develops in response to this enhanced zonal pressure gradient caused by the pressure surge as part of the onset of an active phase of the Australian summer monsoon. This study shows that three prominent anticyclonic circulations intensify in the SH extratropics, stretching from the south Indian Ocean to the South Pacific, beneath regions of upper-tropospheric dry atmospheric mass convergence, originating partly from the monsoon convection outflow. These anticyclonic circulations are regional manifestations of the dry atmospheric mass increase in the SH.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3