A Model of Strongly Forced Wind Waves

Author:

Fedorov Alexey V.1,Melville W. Kendall2

Affiliation:

1. Department of Geology and Geophysics, Yale University, New Haven, Connecticut

2. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Abstract

Abstract A model of surface waves generated on deep water by strong winds is proposed. A two-layer approximation is adopted, in which a shallow turbulent layer overlies the lower, infinitely deep layer. The dynamics of the upper layer, which is directly exposed to the wind, are nonlinear and coupled to the linear dynamics in the deep fluid. The authors demonstrate that in such a system there exist steady wave solutions characterized by confined regions of wave breaking alternating with relatively long intervals where the wave profiles change monotonically. In the former regions the flow is decelerated; in the latter it is accelerated. The regions of breaking are akin to hydraulic jumps of finite width necessary to join the smooth “interior” flows and have periodic waves. In contrast to classical hydraulic jumps, the strongly forced waves lose both energy and momentum across the jumps. The flow in the upper layer is driven by the balance between the wind stress at the surface, the turbulent drag applied at the layer interface, and the wave drag induced at the layer interface by quasi-steady breaking waves. Propagating in the downwind direction, the strongly forced waves significantly modify the flow in both layers, lead to enhanced turbulence, and reduce the speed of the near-surface flow. According to this model, a large fraction of the work done by the surface wind stress on the ocean in high winds may go directly into wave breaking and surface turbulence.

Publisher

American Meteorological Society

Subject

Oceanography

Reference39 articles.

1. Topographic Effects in Stratified Flows.;Baines,1995

2. Dynamics of roll waves.;Balmforth;J. Fluid Mech.,2004

3. On the incipient breaking of small-scale waves.;Banner;J. Fluid Mech.,1974

4. On the separation of airflow over water waves.;Banner;J. Fluid Mech.,1976

5. Internal waves of permanent form in fluids of great depth.;Benjamin;J. Fluid Mech.,1967

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3