Affiliation:
1. Department of Mathematics, University College London, London, United Kingdom
Abstract
Abstract
A one-parameter family of exact solutions describing the bifurcation of a steady two-dimensional current with uniform vorticity near a gap in a thin barrier is found. The unsteady evolution of source-driven flows toward these steady states is studied using a version of contour dynamics, appropriately modified to take into account the presence of a barrier with a single gap. It is shown that some of the steady solutions are realizable as large-time limits of the source-driven flows, although some are not owing to persistent eddy-shedding events in the vicinity of the gap. For the special case when there is zero net flux through the gap, numerical experiments show that the through-gap flux of vortical fluid increases with the width of the gap and that this flux approaches a steady limit with time.
Publisher
American Meteorological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献