On the Existence of Water Turbulence Induced by Nonbreaking Surface Waves

Author:

Babanin Alexander V.1,Haus Brian K.2

Affiliation:

1. Swinburne University of Technology, Melbourne, Victoria, Australia

2. Division of Applied Marine Physics, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Abstract

Abstract This paper is dedicated to wave-induced turbulence unrelated to wave breaking. The existence of such turbulence has been foreshadowed in a number of experimental, theoretical, and numerical studies. The current study presents direct measurements of this turbulence. The laboratory experiment was conducted by means of particle image velocimetry, which allowed estimates of wavenumber velocity spectra beneath monochromatic nonbreaking unforced waves. Observed spectra intermittently exhibited the Kolmogorov interval associated with the presence of isotropic turbulence. The magnitudes of the energy dissipation rates due to this turbulence in the particular case of 1.5-Hz deep-water waves were quantified as a function of the surface wave amplitude. The presence of such turbulence, previously not accounted for, can affect the physics of the wave energy dissipation, the subsurface boundary layer, and the ocean mixing in a significant way.

Publisher

American Meteorological Society

Subject

Oceanography

Reference26 articles.

1. Enhanced dissipation of kinetic energy beneath surface waves.;Agrawal;Nature,1992

2. On the interaction of surface waves and upper ocean turbulence.;Ardhuin;J. Phys. Oceanogr.,2006

3. On a wave-induced turbulence and a wave-mixed upper ocean layer.;Babanin;Geophys. Res. Lett.,2006

4. Field and laboratory measurements of wave-bottom interaction.;Babanin,2005

5. Predicting the breaking onset of surface water waves.;Babanin;Geophys. Res. Lett.,2007

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3