SHDOMPPDA: A Radiative Transfer Model for Cloudy Sky Data Assimilation

Author:

Evans K. Franklin1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract The spherical harmonics discrete ordinate method for plane-parallel data assimilation (SHDOMPPDA) model is an unpolarized plane-parallel radiative transfer forward model, with corresponding tangent linear and adjoint models, suitable for use in assimilating cloudy sky visible and infrared radiances. It is derived from the spherical harmonics discrete ordinate method plane-parallel (SHDOMPP, also described in this article) version of the spherical harmonics discrete ordinate method (SHDOM) model for three-dimensional atmospheric radiative transfer. The inputs to the SHDOMPPDA forward model are profiles of pressure, temperature, water vapor, and mass mixing ratio and number concentration for a number of hydrometeor species. Hydrometeor optical properties, including detailed phase functions, are determined from lookup tables as a function of mass mean radius. The SHDOMPP and SHDOMPPDA algorithms and construction of the tangent-linear and adjoint models are described. The SHDOMPPDA forward model is validated against the Discrete Ordinate Radiative Transfer Model (DISORT) by comparing upwelling radiances in multiple directions from 100 cloud model columns at visible and midinfrared wavelengths. For this test in optically thick clouds the computational time for SHDOMPPDA is comparable to DISORT for visible reflection, and roughly 5 times faster for thermal emission. The tangent linear and adjoint models are validated by comparison to finite differencing of the forward model.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3