Issues Regarding the Assimilation of Cloud and Precipitation Data

Author:

Errico Ronald M.1,Bauer Peter2,Mahfouf Jean-François3

Affiliation:

1. Goddard Earth Sciences and Technology Center, University of Maryland, Baltimore County, Baltimore, and Global Modeling and Assimilation Office, National Aeronautics and Space Administration, Greenbelt, Maryland

2. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

3. Environment Canada, Dorval, Quebec, Canada

Abstract

Abstract The assimilation of observations indicative of quantitative cloud and precipitation characteristics is desirable for improving weather forecasts. For many fundamental reasons, it is a more difficult problem than the assimilation of conventional or clear-sky satellite radiance data. These reasons include concerns regarding nonlinearity of the required observation operators (forward models), nonnormality and large variances of representativeness, retrieval, or observation–operator errors, validation using new measures, dynamic and thermodynamic balances, and possibly limited predictability. Some operational weather prediction systems already assimilate precipitation observations, but much more research and development remains. The apparently critical, fundamental, and peculiar nature of many issues regarding cloud and precipitation assimilation implies that their more careful examination will be required for accelerating progress.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference100 articles.

1. Andersson, E. , 2004: Modelling the temporal evolution of innovation statistics. Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 153–164.

2. Andersson, E., M.Fisher, E.Hólm, L.Isaksen, G.Radnóti, and Y.Trémolet, 2005: Will the 4D-Var approach be defeated by nonlinearity? ECMWF Tech. Memo. 479, 26 pp.

3. Baker, N. L. , 2000: Observation adjoint-sensitivity and the adaptive observation-targeting problem. Ph.D. thesis, Naval Postgraduate School, Monterey, CA, 241 pp.

4. Observation and background adjoint sensitivity in the adaptive observation-targeting problem.;Baker;Quart. J. Roy. Meteor. Soc.,2000

5. Errors in TMI rainfall estimates over ocean for variational data assimilation.;Bauer;Quart. J. Roy. Meteor. Soc.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3