Comparative Analysis of the Local Observation-Based (LOB) Method and the Nonparametric Regression-Based Method for Gridded Bias Correction in Mesoscale Weather Forecasting

Author:

Gel Yulia R.1

Affiliation:

1. Department of Statistics and Actuarial Science, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada

Abstract

Abstract The comparative analysis of three methods for objective grid-based bias removal in mesoscale numerical weather prediction models is considered. The first technique is the local observation-based (LOB) method that extends further the approaches of several recent studies and is focused on utilizing the information obtained from meteorological stations or neighbor grid points in the proximity of a site of interest. The bias at a site of interest might then be considered as a spatiotemporal function of the weighted information on the past biases observed in the cluster of neighbors during a certain time window. The second method is an extension of model output statistics (MOS), combining several modern multiple regression techniques such as the classification and regression trees (CARTs) and the alternative conditional expectation (ACE) and, therefore, is named the CART–ACE method. The CART–ACE method allows representing possible nonlinear aspects of the bias in a parsimonious linearized statistical model. Finally, the third considered method is a natural combination of the LOB and CART–ACE methods in which the information provided by the LOB method is interpreted as an extra predictor in the regression model of the CART–ACE method. The proposed methods are illustrated by a case study of an observation-based verification and bias correction of fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) 48-h surface temperature, that is, 2-m temperature, forecasts over the Pacific Northwest.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference33 articles.

1. Comparison of methodologies for probabilistic quantitative precipitation forecasting.;Applequist;Wea. Forecasting,2002

2. Estimating optimal transformations for multiple regression and correlations (with discussion).;Breiman;J. Amer. Stat. Assoc.,1985

3. Classification and Regression Trees.;Breiman,1984

4. Estimating optimal transformations for multiple regression and correlation: Comment.;Buja;J. Amer. Stat. Assoc.,1985

5. CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for Vancouver, Montreal, and Atlantic regions of Canada.;Burrows;J. Appl. Meteor.,1995

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3