Spring and Summer Severe Weather Reports over the Midwest as a Function of Convective Mode: A Preliminary Study

Author:

Gallus William A.1,Snook Nathan A.2,Johnson Elise V.3

Affiliation:

1. Department of Geological and Atmospheric Science, Iowa State University, Ames, Iowa

2. School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Radar data during the period 1 April–31 August 2002 were used to classify all convective storms occurring in a 10-state region of the central United States into nine predominant morphologies, and the severe weather reports associated with each morphology were then analyzed. The morphologies included three types of cellular convection (individual cells, clusters of cells, and broken squall lines), five types of linear systems (bow echoes, squall lines with trailing stratiform rain, lines with leading stratiform rain, lines with parallel stratiform rain, and lines with no stratiform rain), and nonlinear systems. Because linear systems with leading and line-parallel stratiform rainfall were relatively rare in the 2002 sample of 925 events, 24 additional cases of these morphologies from 1996 and 1997 identified by Parker and Johnson were included in the sample. All morphologies were found to pose some risk of severe weather, but substantial differences existed between the number and types of severe weather reports and the different morphologies. Normalizing results per event, nonlinear systems produced the fewest reports of hail, and were relatively inactive for all types of severe weather compared to the other morphologies. Linear systems generated large numbers of reports from all categories of severe weather. Among linear systems, the hail and tornado threat was particularly enhanced in systems having leading and line-parallel stratiform rain. Bow echoes were found to produce far more severe wind reports than any other morphology. The flooding threat was largest in broken lines and linear systems having trailing and line-parallel stratiform rain. Cellular storms, despite much smaller areal coverage, also were abundant producers of severe hail and tornadoes, particularly in broken squall lines.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3