Initial and Transient Growth of Symmetric Instability

Author:

Kimura Satoshi1ORCID

Affiliation:

1. a Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan

Abstract

Abstract The mechanism of initial and transient perturbations of symmetric instability (SI) in a hydrostatic flow with lateral shear is analyzed by applying the generalized stability analysis. It is well known that the SI’s most rapidly growing motion is along isopycnals, and the growth rates consist of growing, neutral, and decaying modes. The eigenvectors of these three modes are not orthogonal to each other, hence the initial and transient perturbations bear little resemblance to the normal mode. Our findings indicate that the emergence of normal modes occurs within a time span of 1–3 inertial periods, which we refer to as the transient state. The overall growth of perturbation energy is divided into three components: geostrophic shear production (GSP), lateral shear production (LSP), and meridional buoyancy flux (MB). During the transient state, the perturbation energy is partly driven by MB, contrary to the normal mode which has zero MB. The relative energy contribution is evaluated through the ratio to GSP. While the MB-to-GSP ratio of the initial mode is higher than that of the normal mode, the LSP-to-GSP ratio remains constant. In the absence of the fastest-growing normal mode, MB can serve as the predominant initial energy source. The precise transition in the energy regime is contingent upon the geostrophic Richardson number and Rossby number. Significance Statement Fronts can be unstable to instabilities, which generate disturbance growth and lead to the mixing of water masses. We wanted to understand the initial and transient development of disturbance growth leading to the well-known exponentially growing state. While the exponentially growing disturbance is dominant in the long run, the disturbance growth may not have enough time to achieve the exponentially growing state. We find that the initial disturbance growth bears little resemblance to the exponentially growing state. Capturing the complete spectrum of front evolution remains challenging, and observations have thus far been limited to short-term records. The insights learned from this study can aid in better characterizing the disturbance growth captured in these short-term records.

Funder

Arctic Challenge for Sustainability II (ArCS II), Program

Publisher

American Meteorological Society

Subject

Oceanography

Reference63 articles.

1. Frontal circulation and submesoscale variability during the formation of a Southern Ocean mesoscale eddy;Adams, K. A.,2017

2. On symmetric instabilities in oceanic bottom boundary layers;Allen, J. S.,1998

3. Effects of three-dimensionality on instability and turbulence in a frontal zone;Arobone, E.,2015

4. Parameterization of frontal symmetric instabilities. I: Theory for resolved fronts;Bachman, S. D.,2017

5. Mixed layer instabilities and restratification;Boccaletti, G.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3