Surface-to-Interior Transport Timescales and Ventilation Patterns in a Time-Dependent Circulation Driven by Sustained Climate Warming

Author:

Liu Y.1ORCID,Primeau F.1

Affiliation:

1. a Department of Earth System Science, University of California Irvine, Irvine, California

Abstract

Abstract The effect of climate warming in response to rising atmospheric CO2 on the ventilation of the ocean remains uncertain. Here we make theoretical advances in elucidating the relationship between ideal age and transit time distribution (TTD) in a time-dependent flow. Subsequently, we develop an offline tracer-transport model to characterize the ventilation patterns and time scales in the time-evolving circulation for the 1850–2300 period as simulated with the Community Earth System Model version 1 (CESMv1) under a business-as-usual warming scenario. We found that by 2300 2.1% less water originates from the high-latitude deep water formation regions (both hemispheres) compared to 1850. In compensation, there is an increase in the water originating from the subantarctic. We also found that slowing meridional overturning circulation causes a gradual increase in mean age during the 1850–2300 period, with a globally averaged mean-age increase of ∼110 years in 2300. Where and when the water will be re-exposed to the atmosphere depends on the post-2300 circulation. For example, if we assume that the circulation persists in its year-2300 state (scenario 1), the mean interior-to-surface transit time in year 1850 is ∼1140 years. In contrast, if we assume that the circulation abruptly recovers to its year-1850 state (scenario 2), the mean interior-to-surface transit time in 1850 is only ∼740 years. By 2300, these differences become even larger; in scenario 1, the mean interior-to-surface transit time increases by ∼200 years, whereas scenario 2 decreases by ∼80 years. The dependence of interior-to-surface transit time on the future ocean circulation produces an additional unavoidable uncertainty in the long-term durability of marine carbon dioxide removal strategies. Significance Statement The ocean’s circulation, when altered by climate warming, can affect its capacity to absorb heat and CO2, which are crucial for the global climate. In our study, we investigated how global warming, caused by rising CO2 levels, might impact the ocean circulation—the way water moves from deep ocean to the surface and vice versa. We discovered that by 2300, if we continue on our current warming trajectory, the origins of water within the ocean will shift, with less coming from deep, cold zones near the poles and more from subantarctic regions. As a result, deep water will take longer time before it resurfaces than shallow water. How quickly this water travels from deep regions to the surface could change, depending on the state of future ocean circulation. If the circulation remains as predicted in 2300, this journey will take longer. Conversely, if it reverts to the pattern in 1850, the process will be quicker. This variability introduces added uncertainty to strategies aimed at mitigating climate change by storing CO2 in the ocean. Our work highlights the intricate ways in which climate change can influence our oceans, potentially affecting our plans to mitigate global warming.

Funder

US Department of Energy Office

US Department of Energy

Publisher

American Meteorological Society

Subject

Oceanography

Reference45 articles.

1. An offline implicit solver for simulating prebomb radiocarbon;Bardin, A.,2014

2. Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age;Bardin, A.,2016

3. Transit time estimation in catchments: Recent developments and future directions;Benettin, P.,2022

4. Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model;Bernardello, R.,2014

5. Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: Historical bias, forcing response, and state dependence;Bracegirdle, T. J.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3