Limited Width of Tropical Cyclone–Induced Baroclinic Geostrophic Response

Author:

Lu Zhumin12,Shang Xiaodong12

Affiliation:

1. a State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China

2. b CAS Key Laboratory of Science and Technology on Operational Oceanography, South China Sea Institute of Oceanology, Guangzhou, China

Abstract

Abstract Despite the large radius (R17) of gale-force wind of a tropical cyclone (TC), the observed TC-induced effects on mesoscale and large-scale ocean via the baroclinic geostrophic response are found to have a limited cross-track width; this strange but important phenomenon is interpreted here. Driven by the wind stress curl (WSC), the TC-induced geostrophic response is in fact regulated by along-track integration of the WSC (AIWSC). Constrained by atmospheric TC dynamics, the violent winds outside the radius (Rmax) of maximum wind of any TC must have nearly zero WSC. Consequently, the AIWSC function can be fit as a boxcar function with an extraordinarily large positive value between ±Rmax about the track. Based on this boxcar function, the theoretical estimate of the cross-track length scale of the baroclinic geostrophic response, Ld + Rmax, is presented, where Ld is the first-mode baroclinic Rossby deformation radius. Further, this scale is validated by numerical experiments to well explain the width of the altimetry-observed geostrophic response induced by any TC. Evidently, Ld + Rmax is far smaller than R17 and thus the baroclinic geostrophic response generally has a limited width. This study implies that, although for a TC the violent winds outside Rmax are generally ∼90% of all winds, in an open ocean these winds may be useless to perturb the ocean interior due to the nearly zero WSC. Significance Statement Despite the large radius of gale-force wind of a tropical cyclone, the effects of a tropical cyclone on mesoscale and large-scale ocean are confined in a limited cross-track width; this strange but important phenomenon is interpreted here. In essence, the effects are exerted by the wind stress curl rather than by the wind stress. However, constrained by atmospheric dynamics, a tropical cyclone has most of the positive wind stress curl in the inner core and nearly zero wind stress curl far away from the inner core. Consequently, albeit violent, the winds outside the inner core cannot make an appreciable contribution to the physical processes below the mixed layer.

Funder

the National Natural Science Foundation of China

the National Key Research and Development Program of China

Publisher

American Meteorological Society

Reference55 articles.

1. Antonov, J. I., and Coauthors, 2010: Salinity. Vol. 2, World Ocean Atlas 2009, NOAA Atlas NESDIS 69, 184 pp.

2. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates;Bleck, R.,2002

3. Size and strength of tropical cyclones as inferred from QuikSCAT data;Chan, K. T. F.,2012

4. Chavas, D. R., 2022: Code for tropical cyclone wind profile model of Chavas et al (2015, JAS). Purdue University Research Repository, accessed 10 April 2023, https://doi.org/10.4231/CZ4P-D448.

5. A QuikSCAT climatology of tropical cyclone size;Chavas, D. R.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3