Affiliation:
1. Horn Point Lab University of Maryland Center for Environmental Science P.O. BOX 775 Cambridge, MD 21613, U.S.A.
Abstract
Abstract
Large-amplitude internal solitary waves were recently observed in a coastal plain estuary and were hypothesized to evolve from an internal lee wave generated at the channel-shoal interface. To test this mechanism, a 3D nonhydrostatic model with nested domains and adaptive grids was used to investigate the generation of the internal solitary waves and their subsequent nonlinear evolution. A complex sequence of wave propagation and transformation was documented and interpreted using the nonlinear wave theory based on the Korteweg-de Vries equation. During the ebb tide a mode-2 internal lee wave is generated by the interaction between lateral flows and channel-shoal topography. This mode-2 lee wave subsequently propagates onto the shallow shoal and transforms into a mode-1 wave of elevation as strong mixing on the flood tide erases stratification in the bottom boundary layer and the lower branch of the mode-2 wave. The mode-1 wave of elevation evolves into an internal solitary wave due to nonlinear steepening and spatial changes in the wave phase speed. As the solitary wave of elevation continues to propagate over the shoaling bottom, the leading edge moves ahead as a rarefaction wave while the trailing edge steepens and disintegrates into a train of rank-ordered internal solitary waves, due to the combined effects of shoaling and dispersion. Strong turbulence in the bottom boundary layer dissipates wave energy and causes the eventual destruction of the solitary waves. In the meantime, the internal solitary waves can generate elevated shear and dissipation rate in local regions.
Publisher
American Meteorological Society