Sensitivities of the West Greenland Current to Greenland Ice Sheet Meltwater in a Mesoscale Ocean/Sea Ice Model

Author:

Morrison Theresa J.12ORCID,McClean Julie L.1,Gille Sarah T.1,Maltrud Mathew E.3,Ivanova Detelina P.4,Craig Anthony P.5

Affiliation:

1. a Scripps Institution of Oceanography, La Jolla, California

2. b Princeton University, Princeton, New Jersey

3. c Los Alamos National Laboratory, Los Alamos, New Mexico

4. d Climformatics, Fremont, California

5. e Anthony Craig LLC, Seattle, Washington

Abstract

Abstract Meltwater from the Greenland Ice Sheet can alter the continental shelf/slope circulation and cross-shelf freshwater fluxes and limit deep convection in adjacent basins through surface freshening. We explore the impacts on the West Greenland Current and eastern Labrador Sea with different vertical distributions of the meltwater forcing. In this study, we present the results from global coupled ocean/sea ice simulations, forced with atmospheric reanalysis, that are mesoscale eddy-active (∼2–3-km horizontal spacing) and eddy-permitting (∼6–7-km horizontal spacing) in the study region. We compare the West Greenland Current in mesoscale eddy-active and eddy-permitting without meltwater to highlight the role of small-scale features. The mesoscale eddy-active configuration is then used to assess the change in the eastern Labrador Sea when meltwater is added to the surface or vertically distributed to account for mixing within fjords. In both simulations with meltwater, the West Greenland and West Greenland Coastal Currents are faster than in the simulation with no meltwater; their mean surface speeds are the highest in the vertical distribution case. In the latter case, there is enhanced baroclinic conversion at the shelf break compared to the simulation with no meltwater. When meltwater is vertically distributed, there is an increase in baroclinic conversion at the shelf break associated with increased eddy kinetic energy. In addition, in the eastern Labrador Sea, the salinity is lower and the meltwater volume is greater when meltwater is vertically distributed. Therefore, the West Greenland Current is sensitive to how meltwater is added to the ocean with implications for the freshening of the Labrador Sea. Significance Statement Our goal is to understand how the flux of freshwater across the West Greenland continental slope into the Labrador Sea is modified by meltwater from the Greenland Ice Sheet. We compare the simulations of the ocean that capture key dynamics along the West Greenland continental slope that have no meltwater, meltwater added to the ocean surface, and meltwater distributed vertically to represent the mixing within fjords. When meltwater is added, the currents along the continental slope are faster, with the greatest increase when meltwater is vertically distributed. In that case, there is enhanced freshening of the Labrador Sea because modified density gradients generate more eddies. Proper representation of the vertical structure of meltwater is important for projecting the impact of freshwater on the subpolar North Atlantic.

Funder

Office of Science

Publisher

American Meteorological Society

Reference72 articles.

1. Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results;Bamber, J. L.,2018

2. Spreading of Greenland meltwaters in the ocean revealed by noble gases;Beaird, N.,2015

3. Characteristics of meltwater export from Jakobshavn Isbræ and Ilulissat Icefjord;Beaird, N.,2017

4. Export of strongly diluted Greenland meltwater from a major glacial fjord;Beaird, N. L.,2018

5. On the generation and role of eddy variability in the central North Atlantic Ocean;Beckmann, A.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3