What Causes the Subsurface Velocity Maximum of the East Australian Current?

Author:

Oke Peter R.1ORCID,Rykova Tatiana1,Sloyan Bernadette M.1,Ridgway Ken R.1

Affiliation:

1. a CSIRO Environment, Hobart, Tasmania, Australia

Abstract

Abstract The East Australian Current (EAC) system includes a poleward jet that flows adjacent to the continental shelf, a southward and eastward extension, and a complex eddy field. The EAC jet is often observed to be subsurface intensified. Here, we explain that there are two factors that cause the EAC to develop a subsurface maximum. First, the EAC flows as a narrow current, carrying low-density water from the Coral Sea into the denser waters of the Tasman Sea. This results in horizontal density gradients with a different sign on either side of the jet, negative onshore and positive offshore. According to the thermal wind relation, this produces vertical gradients in southward current that are surface intensified onshore and subsurface intensified offshore. Second, we show that the winds over the shelf are mostly downwelling favorable, drawing the surface EAC waters onshore. This aligns the region of positive horizontal density gradients with the EAC core, producing a subsurface velocity maximum. The presence of a subsurface maximum may produce baroclinic instabilities that play a role in eddy formation and EAC separation from the coast. Significance Statement Observations of the East Australian Current (EAC) show that the strongest currents are often below the surface at about 100-m depth. Two factors cause this subsurface maximum. First, because the EAC is a narrow jet, carrying warm water southward from the Coral Sea, the density gradient across the jet changes sign, causing surface-intensified currents onshore and subsurface-intensified currents offshore. Second, the wind field over the shelf often pulls the shallow waters shoreward, shifting the waters that cause subsurface intensification to align with the center of the jet, resulting in a subsurface maximum of the EAC. This process may be responsible for the generation of eddies in the Tasman Sea.

Funder

Integrated Marine Observing System

Publisher

American Meteorological Society

Subject

Oceanography

Reference75 articles.

1. Downwelling circulation on the Oregon Continental Shelf. Part I: Response to idealized forcing;Allen, J. S.,1996

2. The Gulf Stream’s path and time-averaged velocity structure and transport at 68.5°W and 70.3°W;Andres, M.,2020

3. On the variability of the East Australian Current: Jet structure, meandering, and influence on shelf circulation;Archer, M. R.,2017

4. Biological properties across the Tasman Front off southeast Australia;Baird, M. E.,2008

5. Deep ADCP velocity measurements in the Gulf Stream;Berezutskii, A. V.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3