Water-Use Efficiency of the Terrestrial Biosphere: A Model Analysis Focusing on Interactions between the Global Carbon and Water Cycles

Author:

Ito Akihiko1,Inatomi Motoko2

Affiliation:

1. Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, and Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

2. Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

Abstract Carbon and water cycles are intimately coupled in terrestrial ecosystems, and water-use efficiency (WUE; carbon gain at the expense of unit water loss) is one of the key parameters of ecohydrology and ecosystem management. In this study, the carbon cycle and water budget of terrestrial ecosystems were simulated using a process-based ecosystem model called Vegetation Integrative Simulator for Trace Gases (VISIT), and WUE was evaluated: WUEC, defined as gross primary production (GPP) divided by transpiration; and WUES, defined as net primary production (NPP) divided by actual evapotranspiration. Total annual WUEC and WUES of the terrestrial biosphere were estimated as 8.0 and 0.92 g C kg−1 H2O, respectively, for the period 1995–2004. Spatially, WUEC and WUES were only weakly correlated. WUES ranged from <0.2 g C kg−1 H2O in arid ecosystems to >1.5 g C kg−1 H2O in boreal and alpine ecosystems. The historical simulation implied that biospheric WUE increased from 1901 to 2005 (WUEC, +7%; WUES, +12%) mainly as a result of the augmentation of productivity in parallel with the atmospheric carbon dioxide increase. Country-based analyses indicated that total NPP is largely determined by water availability, and human appropriation of NPP is also related to water resources to a considerable extent. These results have implications for 1) responses of the carbon cycle to the anticipated global hydrological changes, 2) responses of the water budget to changes in the terrestrial carbon cycle, and 3) ecosystem management based on optimized resource use.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference73 articles.

1. Simulations of global evapotranspiration using semiempirical and mechanistic schemes of plant hydrology;Alton;Global Biogeochem. Cycles,2009

2. Mean annual GPP of Europe derived from its water balance;Beer;Geophys. Res. Lett.,2007

3. Temporal and among-site variability of inherent water use efficiency at the ecosystem level;Beer;Global Biogeochem. Cycles,2009

4. Variations of wood δ13C and water-use efficiency of Abies alba during the last century;Bert;Ecology,1997

5. Projected increase in continental runoff due to plant responses to increasing carbon dioxide;Betts;Nature,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3