Seasonality of Deep Cycle Turbulence in the Eastern Equatorial Pacific

Author:

Pham Hieu T.1,Smyth William D.2,Sarkar Sutanu3,Moum James N.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California

2. College of Earth, Ocean and Atmospheric Science, Oregon State University, Corvallis, Oregon

3. Department of Mechanical and Aerospace Engineering, and Scripps Institute of Oceanography, University of California, San Diego, La Jolla, California

Abstract

AbstractThe seasonal cycles of the various oceanic and atmospheric factors influencing the deep cycle of turbulence in the eastern Pacific cold tongue are explored. Moored observations at 140°W have shown seasonal variability in the stratification, velocity shear, and turbulence above the Pacific Equatorial Undercurrent (EUC). In boreal spring, the thermocline and EUC shoal and turbulence decreases. Marginal instability (clustering of the local gradient Richardson number around the critical value of 1/4), evident throughout the rest of the year, has not been detected during spring. While the daily averaged turbulent energy dissipation in the EUC is weakest during the spring, it is not clear whether the diurnal fluctuations that define the deep cycle cease. Large-eddy simulations are performed using climatological initial and boundary conditions representative of January, April, July, and October. Deep cycle turbulence is evident in all cases; the mechanism remains the same, and the maximum turbulence levels are similar. In the April simulation, however, the deep cycle is confined to the uppermost ~30 m, explaining why it has not been detected in moored microstructure observations.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3