Cross-Shelf Circulation Induced by the Kuroshio Shear Stress in the East China Sea

Author:

Wei Yanzhou1

Affiliation:

1. State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, Hangzhou, China

Abstract

AbstractThis study solves two-dimensional (cross-shelf and depth directions) steady-state nonlinear primitive equations to infer the cross-shelf circulation induced by the Kuroshio shear stress in the East China Sea (ECS). The Kuroshio velocity data are estimated from hydrographic observations at the PN section in the ECS. Nonlinear momentum equations are solved using an iterative approach in a terrain-following coordinate system, which helps to adequately take into account the boundary conditions over complex topography. The vertical shear stress of the Kuroshio is shown to induce two offshore transport pathways over the continental shelf, which are related to the structure of the interior geostrophic current and bottom Ekman transport, respectively. As a result of the vertical shear stress, an upwelling is induced above the bottom Ekman layer on the continental slope. The horizontal shear stress of the Kuroshio has the effect of inducing onshore transport at the flow core. The advection terms in the primitive equations are found to amplify the cross-shelf velocity solved from the linear equations. This study reveals that the Kuroshio has a substantial effect on the cross-shelf circulation and that it might drive multiple transport pathways.

Publisher

American Meteorological Society

Subject

Oceanography

Reference46 articles.

1. On the variability of the East Australian Current: Jet structure, meandering, and influence on shelf circulation;Archer;J. Geophys. Res. Oceans,2017

2. Cross-shelf exchange;Brink;Annu. Rev. Mar. Sci.,2016

3. Sources of eddy energy in the Gulf Stream recirculation region;Bryden;J. Mar. Res.,1982

4. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf;Chen;J. Geophys. Res.,1999

5. Simulating the time-variable coastal upwelling during CODE 2;Chen;J. Mar. Res.,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3