Prediction Skill of the NAO and PNA from Daily to Seasonal Time Scales

Author:

Johansson Åke1

Affiliation:

1. SAIC/Environmental Modeling Center, National Centers for Environmental Prediction, NWS/NOAA/DOC, Camp Springs, Maryland

Abstract

Abstract The skill of state-of-the-art operational dynamical models in predicting the two most important modes of variability in the Northern Hemisphere extratropical atmosphere, the North Atlantic Oscillation (NAO) and Pacific–North American (PNA) teleconnection patterns, is investigated at time scales ranging from daily to seasonal. Two uncoupled atmospheric models used for deterministic forecasting in the short to medium range as well as eight fully coupled atmosphere–land–ocean forecast models used for monthly and seasonal forecasting are examined and compared. For the short to medium range, the level of forecast skill for the two indices is higher than that for the entire Northern Hemisphere extratropical flow. The forecast skill of the PNA is higher than that of the NAO. The forecast skill increases with the magnitude of the NAO and PNA indices, but the relationship is not pronounced. The probability density function (PDF) of the NAO and PNA indices is negatively skewed, in agreement with the distribution of skewness of the geopotential field. The models maintain approximately the observed PDF, including the negative skewness, for the first week. Extreme negative NAO/PNA events have larger absolute values than positive extremes in agreement with the negative skewness of the two indices. Recent large extreme events are generally well forecasted by the models. On the intraseasonal time scale it is found that both NAO and PNA have lingering forecast skill, in contrast to the Northern Hemisphere extratropical flow as a whole. This fact offers some hope for extended range forecasting, even though the skill is quite low. No conclusive positive benefit is seen from using higher horizontal resolution or coupling to the oceans. On the monthly and seasonal time scales, the level of forecast skill for the two indices is generally quite low, with the exception of winter predictions at short lead times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3