Urban Influences on the Spatiotemporal Characteristics of Runoff and Precipitation during the 2009 Atlanta Flood

Author:

Debbage Neil1,Shepherd J. Marshall2

Affiliation:

1. Department of Political Science and Geography, The University of Texas at San Antonio, San Antonio, Texas

2. Department of Geography, University of Georgia, Athens, Georgia

Abstract

Abstract The 2009 Atlanta flood was a historic event that resulted in catastrophic damage throughout the metropolitan area. The flood was the product of several hydrometeorological processes, including moist antecedent conditions, ample atmospheric moisture, and mesoscale training. Additionally, previous studies hypothesized that the urban environment of Atlanta altered the location and/or overall quantities of precipitation and runoff that ultimately produced the flood. This hypothesis was quantitatively evaluated by conducting a modeling case study that utilized the Weather Research and Forecasting Model. Two model runs were performed: 1) an urban run designed to accurately depict the flood event and 2) a nonurban simulation where the urban footprint of Atlanta was replaced with natural vegetation. Comparing the output from the two simulations revealed that interactions with the urban environment enhanced the precipitation and runoff associated with the flood. Specifically, the nonurban model underestimated the cumulative precipitation by approximately 100 mm in the area downwind of Atlanta where urban rainfall enhancement was hypothesized. This notable difference was due to the increased surface convergence observed in the urban simulation, which was likely attributable to the enhanced surface roughness and thermal properties of the urban environment. The findings expand upon previous research focused on urban rainfall effects since they demonstrate that urban interactions can influence mesoscale hydrometeorological characteristics during events with prominent synoptic-scale forcing. Finally, from an urban planning perspective, the results highlight a potential two-pronged vulnerability of urban environments to extreme rainfall, as they may enhance both the initial precipitation and subsequent runoff.

Funder

Georgia Water Resources Institute

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3