Differences in Response of Terrestrial Water Storage Components to Precipitation over 168 Global River Basins

Author:

Zhang Yafeng1,He Bin1,Guo Lanlan2,Liu Daochen3

Affiliation:

1. College of Global Change and Earth System Science, Beijing Normal University, Beijing, China

2. Academy of Disaster Reduction and Emergency Management, School of Geography, Beijing Normal University, Beijing, China

3. School of Environment and Planning, Liaocheng University, Shandong, China

Abstract

Abstract A time lag exists between precipitation P falling and being converted into terrestrial water. The responses of terrestrial water storage (TWS) and its individual components to P over the global scale, which are vital for understanding the interactions and mechanisms between climatic variables and hydrological components, are not well constrained. In this study, relying on land surface models, we isolate five component storage anomalies from TWS anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment mission (GRACE): canopy water storage anomalies (CWSA), surface water storage anomalies (SWSA), snow water equivalent anomalies (SWEA), soil moisture storage anomalies (SMSA), and groundwater storage anomalies (GWSA). The responses of TWSA and of the individual components of TWSA to P are then evaluated over 168 global basins. The lag between TWSA and P is quantified by calculating the correlation coefficients between GRACE-based TWSA and P for different time lags, then identifying the lag (measured in months) corresponding to the maximum correlation coefficient. A multivariate regression model is used to explore the relationship between climatic and basin characteristics and the lag between TWSA and P. Results show that the spatial distribution of TWSA trend presents a similar global pattern to that of P for the period January 2004–December 2013. TWSA is positively related to P over basins but with lags of variable duration. The lags are shorter in the low- and midlatitude basins (1–2 months) than those in the high-latitude basins (6–9 months). The spatial patterns of the maximum correlations and the corresponding lags between individual components of the TWSA and P are consistent with those of the GRACE-based analysis, except for SWEA (3–8 months) and CWSA (0 months). The lags between GWSA, SMSA, and SWSA to P can be arranged as GWSA > SMSA ≥ SWSA. Regression analysis results show that the lags between TWSA and P are related to the mean temperature, mean precipitation, mean latitude, mean longitude, mean elevation, and mean slope.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3