Soil Moisture Drought in Europe: A Compound Event of Precipitation and Potential Evapotranspiration on Multiple Time Scales

Author:

Manning Colin1,Widmann Martin1,Bevacqua Emanuele2,Van Loon Anne F.3,Maraun Douglas2,Vrac Mathieu4

Affiliation:

1. School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

2. Wegener Center for Climate and Global Change, University of Graz, Graz, Austria

3. Department of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom

4. Laboratoire des Sciences du Climat et de l’Environnement (LSCE-IPSL), Centre d’Etudes de Saclay, Gif-sur-Yvette, France

Abstract

Abstract Compound events are extreme impacts that depend on multiple variables that need not be extreme themselves. In this study, we analyze soil moisture drought as a compound event of precipitation and potential evapotranspiration (PET) on multiple time scales related to both meteorological drought and heat waves in wet, transitional, and dry climates in Europe during summer. Drought indices that incorporate PET to account for the effect of temperature on drought conditions are sensitive to global warming. However, as evapotranspiration (ET) is moisture limited in dry climates, the use of such drought indices has often been criticized. We therefore assess the relevance of the contributions of both precipitation and PET to the estimation of soil moisture drought. Applying a statistical model based on pair copula constructions to data from FluxNet sites in Europe, we find at all sites that precipitation exerts the main control over soil moisture drought. At wet sites PET is additionally required to explain the onset, severity, and persistence of drought events over different time scales. At dry sites, where ET is moisture limited in summer, PET does not improve the estimation of soil moisture. In dry climates, increases in drought severity measured by indices incorporating PET may therefore not indicate further drying of soil but the increased availability of energy that can contribute to other environmental hazards such as heat waves and wildfires. We therefore highlight that drought indices including PET should be interpreted within the context of the climate and season in which they are applied in order to maximize their value.

Funder

Volkswagen Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3