Comparison of GPM Core Observatory and Ground-Based Radar Retrieval of Mass-Weighted Mean Raindrop Diameter at Midlatitude

Author:

D’Adderio Leo Pio1,Vulpiani Gianfranco2,Porcù Federico3,Tokay Ali4,Meneghini Robert5

Affiliation:

1. Department of Physics and Earth Science, University of Ferrara, Ferrara, and Institute of Atmospheric Sciences and Climate, National Research Council, Rome, Italy

2. Department of Civil Protection, Presidency of the Council of Ministers, Rome, Italy

3. Department of Physics and Astronomy, University of Bologna, Bologna, Italy

4. Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland

5. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract One of the main goals of the National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) mission is to retrieve parameters of the raindrop size distribution (DSD) globally. As a standard product of the Dual-Frequency Precipitation Radar (DPR) on board the GPM Core Observatory satellite, the mass-weighted mean diameter Dm and the normalized intercept parameter Nw are estimated in three dimensions at the resolution of the radar. These are two parameters of the three-parameter gamma model DSD adopted by the GPM algorithms. This study investigates the accuracy of the Dm retrieval through a comparative study of C-band ground radars (GRs) and GPM products over Italy. The reliability of the ground reference is tested by using two different approaches to estimate Dm. The results show good agreement between the ground-based and spaceborne-derived Dm, with an absolute bias being generally lower than 0.5 mm over land in stratiform precipitation for the DPR algorithm and the combined DPR–GMI algorithm. For the DPR–GMI algorithm, the good agreement extends to convective precipitation as well. Estimates of Dm from the DPR high-sensitivity (HS) Ka-band data show slightly worse results. A sensitivity study indicates that the accuracy of the Dm estimation is independent of the height above surface (not shown) and the distance from the ground radar. On the other hand, a nonuniform precipitation pattern (interpreted both as high variability and as a patchy spatial distribution) within the DPR footprint is usually associated with a significant error in the DPR-derived estimate of Dm.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3