A Simple Model of a Balanced Boundary Layer Coupled to a Large-Scale Convective Circulation

Author:

Beare Robert J.1,Cullen Michael J. P.2

Affiliation:

1. University of Exeter, Exeter, United Kingdom

2. Met Office, Exeter, United Kingdom

Abstract

Abstract Many simple models of large-scale tropical circulations do not include a frictional boundary layer. A simple model is presented where the convective circulation is coupled to the boundary layer convergence. In the free troposphere, convection and boundary layer heating try to relax to a moist adiabat from the local sea surface temperature with a time scale τc, but other processes act to maintain a weak temperature gradient. There is a mass balance between radiatively driven subsidence and the large-scale convective mass flux. For a prescribed Gaussian surface temperature, the model predicts a mass flux that varies as and a convective width proportional to its reciprocal. In the boundary layer, there can be significant horizontal temperature gradients and a balance between the pressure gradient and drag is assumed. Coupling between the two layers is mediated by the vertical velocity at the top of the boundary layer. The boundary layer constrains the circulation in three ways. First, it may lengthen the relaxation time scale compared to deep convection. Second, the evaporation in the nonconvecting region constrains the horizontal moisture advection. Third, it maintains a convective boundary layer where there is a convective mass flux; this condition cannot be satisfied if τc is too small or if the drag is too large, thus showing that such values are physically impossible. These results provide testable hypotheses concerning the physics and large-scale dynamics in weather and climate models.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference16 articles.

1. On the relationship between SST gradients, boundary layer winds, and convergence over the tropical oceans;Back;J. Climate,2009

2. Balanced models of boundary-layer convergence;Beare;Quart. J. Roy. Meteor. Soc.,2012

3. A new convective adjustment scheme. Part I: Observational and theoretical basis;Betts;Quart. J. Roy. Meteor. Soc.,1986

4. A simple model of a convectively coupled Walker circulation using the weak temperature gradient approximation;Bretherton;J. Climate,2002

5. On large-scale circulations in convecting atmospheres;Emanuel;Quart. J. Roy. Meteor. Soc.,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3