Affiliation:
1. Meteorological Research Division, Environment and Climate Change Canada, Montreal, Quebec, Canada
Abstract
Abstract
Simulations of a well-observed squall line that occurred during the Midlatitude Continental Convective Clouds Experiment (MC3E) were conducted using a mesoscale model with a horizontal grid spacing of 1 km to examine the importance of parameterized ice-phase processes to changes in concentrations of activated cloud condensation nuclei (CCN) in a detailed two-moment bulk microphysics scheme. Numerical experiments showed that the simulated squall-line structure was sensitive to changes in activated CCN concentration not only from the direct impacts on cloud droplet sizes and autoconversion rates, but also because of changes in the growth rates and spatial distribution of ice-phase condensate. A microphysical budget analysis highlighted the importance of graupel in rain production and the sensitivity of graupel growth rates on changes to CCN concentrations. Sensitivity tests on the level of detail in the representation of graupel, specifically the treatment of its bulk density and the number of prognostic moments, indicated that changes in the reflectivity and precipitation structure of the simulated storm due to changes in CCN were sensitive to the graupel parameterization. The results suggest that the proper representation of graupel and possibly other ice-phase categories in microphysics schemes may be crucial for correctly simulating the effects of changes to CCN concentrations for continental deep convective systems.
Publisher
American Meteorological Society
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献