Affiliation:
1. University of Wisconsin–Madison, Madison, Wisconsin
Abstract
AbstractA combination of cloud-permitting model (CPM) simulations, satellite, and reanalysis data are used to test whether the diurnal cycle in surface temperature has a significant impact on the intensity of deep convection as measured by high-percentile updraft velocities, lightning, and CAPE. The land–ocean contrast in lightning activity shows that convective intensity varies between land and ocean independently from convective quantity. Thus, a mechanism that explains the land–ocean contrast must be able to do so even after controlling for precipitation variations. Motivated by the land–ocean contrast, we use idealized CPM simulations to test the impact of the diurnal cycle on high-percentile updrafts. In simulations, updrafts are somewhat enhanced due to large-scale precipitation enhancement by the diurnal cycle. To control for large-scale precipitation, we use statistical sampling techniques. After controlling for precipitation enhancement, the diurnal cycle does not affect convective intensities. To explain why sampled updrafts are not enhanced, we note that CAPE is also not increased, likely due to boundary layer quasi equilibrium (BLQE) occurring over our land area. Analysis of BLQE in terms of net positive and negative mass flux finds that boundary layer entrainment, and even more importantly downdrafts, account for most of the moist static energy (MSE) sink that is balancing surface fluxes. Using ERA-Interim data, we also find qualitative evidence for BLQE over land in the real world, as high percentiles of CAPE are not greater over land than over ocean.
Funder
National Science Foundation
University of Wisconsin—Madison
University Wisconsin-Madison, Department of Statistics
Publisher
American Meteorological Society
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献