A Stochastic Lagrangian Basis for a Probabilistic Parameterization of Moisture Condensation in Eulerian Models

Author:

Tsang Yue-Kin1,Vallis Geoffrey K.2

Affiliation:

1. School of Mathematics, University of Leeds, Leeds, United Kingdom

2. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom

Abstract

Abstract In this paper, we describe the construction of an efficient probabilistic parameterization that could be used in a coarse-resolution numerical model in which the variation of moisture is not properly resolved. An Eulerian model using a coarse-grained field on a grid cannot properly resolve regions of saturation—in which condensation occurs—that are smaller than the grid boxes. Thus, in the absence of a parameterization scheme, either the grid box must become saturated or condensation will be underestimated. On the other hand, in a stochastic Lagrangian model of moisture transport, trajectories of parcels tagged with humidity variables are tracked, and small-scale moisture variability can be retained; however, explicitly implementing such a scheme in a global model would be computationally prohibitive. One way to introduce subgrid-scale saturation into an Eulerian model is to assume the humidity within a grid box has a probability distribution. To close the problem, this distribution is conventionally determined by relating the required subgrid-scale properties of the flow to the grid-scale properties using a turbulence closure. Here, instead, we determine an assumed probability distribution by using the statistical moments from a stochastic Lagrangian version of the system. The stochastic system is governed by a Fokker–Planck equation, and we use that, rather than explicitly following the moisture parcels, to determine the parameters of the assumed distribution. We are thus able to parameterize subgrid-scale condensation in an Eulerian model in a computationally efficient and theoretically well-founded way. In two idealized advection–condensation problems, we show that a coarse Eulerian model with the subgrid parameterization is well able to mimic its Lagrangian counterpart.

Funder

Wolfson Foundation

Leverhulme Trust

Natural Environment Research Council

Engineering and Physical Sciences Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3