Solutions to the 3D Transport Equation and 1D Diffusion Equation for Passive Tracers in the Atmospheric Boundary Layer and Their Applications

Author:

Ren Shuzhan1

Affiliation:

1. Environment and Climate Change Canada, Downsview, Ontario, Canada

Abstract

Abstract A solution to the 3D transport equation for passive tracers in the atmospheric boundary layer (ABL), formulated in terms of Green’s function (GF), is derived to show the connection between the concentration and surface fluxes of passive tracers through GF. Analytical solutions to the 1D vertical diffusion equation are derived to reveal the nonlinear dependence of the concentration and flux on the diffusivity, time, and height, and are employed to examine the impact of the diffusivity on the diurnal variations of CO2 in the ABL. The properties of transport operator H and their implications in inverse modeling are discussed. It is found that H has a significant contribution to the rectifier effect in the diurnal variations of CO2. Since H is the integral of GF in time, the narrow distribution of GF in time justifies the reduction of the size of H in inverse modeling. The exponential decay of GF with height suggests that the estimated surface fluxes in inverse modeling are more sensitive to the observations in the lower ABL. The solutions and first mean value theorem are employed to discuss the uncertainties associated with the concentration–mean surface flux equation used to link the concentrations and mean surface flux. Both analytical and numerical results show that the equation can introduce big errors, particularly when surface flux is sign indefinite. Numerical results show that the conclusions about the evolution properties of passive tracers based on the analytical solutions also hold in the cases with a more complicated diffusion coefficient and time-varying ABL height.

Funder

Environment and Climate Change Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3