Entrainment in Resolved, Dry Thermals

Author:

Lecoanet Daniel1ORCID,Jeevanjee Nadir2

Affiliation:

1. Princeton Center for Theoretical Science, and Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey

2. Department of Geosciences, Princeton University, Princeton, New Jersey

Abstract

AbstractEntrainment in cumulus convection remains ill understood and difficult to quantify. For instance, entrainment is widely believed to be a fundamentally turbulent process, even though Turner pointed out in 1957 that dry thermals entrain primarily because of buoyancy (via a dynamical constraint requiring an increase in radius r). Furthermore, entrainment has been postulated to obey a 1/r scaling, but this scaling has not been firmly established. Here, we study the classic case of dry thermals in a neutrally stratified environment using fully resolved direct numerical simulation. We combine this with a thermal tracking algorithm that defines a control volume for the thermal at each time, allowing us to directly measure entrainment. We vary the Reynolds number (Re) of our thermals between laminar (Re ≈ 600) and turbulent (Re ≈ 6000) regimes, finding only a 20% variation in entrainment rate ε, supporting the claim that turbulence is not necessary for entrainment. We also directly verify the postulated ε ~ 1/r scaling law.

Funder

Princeton University

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal vortex ring: vortex-dynamics analysis of a high-resolution simulation;Journal of Fluid Mechanics;2024-07-25

2. The Role of the Toroidal Vortex in Cumulus Clouds' Entrainment and Mixing;Journal of Geophysical Research: Atmospheres;2024-07-10

3. Simplified Approximations of Direct Cumulus Entrainment and Detrainment;Journal of the Atmospheric Sciences;2024-06

4. Observations of Boundary Layer Convergence Lines and Associated Updrafts in the U.S. Southern Great Plains;Journal of the Atmospheric Sciences;2023-12

5. Deep Convection and Convective Clouds;Fast Processes in Large‐Scale Atmospheric Models;2023-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3