Modeling the Transient Response of Tropical Convection to Mesoscale SST Variations

Author:

Skyllingstad Eric D.1,de Szoeke Simon P.1,O’Neill Larry W.1

Affiliation:

1. College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Abstract

Abstract A cloud-resolving model coupled to a mixed layer ocean with an initial 500-km-wide, +3-K sea surface temperature (SST) patch is used to demonstrate the relationship between tropical mesoscale SST gradients and convection under different wind speeds. On these scales, boundary layer convergence toward hydrostatic low surface pressure is partially responsible for triggering convection, but convection subsequently organizes into cells and squall lines that propagate away from the patch. For strong wind (12 m s−1), enhanced convection is shifted downstream from the patch and consists of relatively small cells that are enhanced from increased moist static energy (MSE) flux over the patch. Convection for weak wind (6 m s−1) develops directly over the patch, merging in larger-scale coherent squall-line systems that propagate away from the patch. Squall lines decay after approximately 1 day, and convection redevelops over the patch region after 2 days. Decreasing patch SST from ocean mixing in the coupled simulations affects the overall strength of the convection, but does not qualitatively alter the convective behavior in comparison with cases with a fixed 3-K SST anomaly. In all cases, increased fluxes of heat and moisture, along with latent heating from shallow convection, initially generate lower pressure over the patch and convergence of the boundary layer winds. Within about 1 day, secondary convective circulations, such as surface cold pools, act to spread the effects of the convection over the model domain and overwhelm the effect of low pressure. SST anomalies (1 and 0.5 K) generate enhanced convection only for winds below 6 m s−1.

Funder

Office of Naval Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3