Stratospheric Trailing Gravity Waves from New Zealand

Author:

Jiang Qingfang1,Doyle James D.1,Eckermann Stephen D.2,Williams Bifford P.3

Affiliation:

1. Marine Meteorology Division, U.S. Naval Research Laboratory, Monterey, California

2. Space Science Division, U.S. Naval Research Laboratory, Washington, D.C.

3. Boulder Division, GATS, Boulder, Colorado

Abstract

Abstract Gravity waves are frequently observed in the stratosphere, trailing long distances from mid- to high-latitude topography. Two such trailing-wave events documented over New Zealand are examined using observations, numerical simulations, and ray-tracing analysis to explore and document stratospheric trailing-wave characteristics and formation mechanisms. We find that the trailing waves over New Zealand are orographically generated and regulated by several processes, including interaction between terrain and mountaintop winds, critical-level absorption, and lateral wave refraction. Among these, the interaction between topography and low-level winds determines the perturbation energy distribution over horizontal scales and directions near the wave source, and accordingly, trailing waves are sensitive to terrain features and low-level winds. Terrain-forced wave modes are filtered by absorption associated with directional wind shear and Jones critical levels. The former plays a role in defining wave-beam orientation, and the latter sets an upper limit for the permissible horizontal wavelength of trailing waves. On propagating into the stratosphere, these orographic gravity waves are subject to horizontal refraction associated with the meridional shear in the stratospheric westerlies, which tends to elongate the wave beams pointing toward stronger westerlies and shorten the wave beams on the opposite side.

Funder

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3