Vertically Sheared Horizontal Flow-Forming Instability in Stratified Turbulence: Analytical Linear Stability Analysis of Statistical State Dynamics Equilibria

Author:

Fitzgerald Joseph G.1,Farrell Brian F.1

Affiliation:

1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

Abstract

Abstract Vertically banded zonal jets are frequently observed in weakly or nonrotating stratified turbulence, with the quasi-biennial oscillation in the equatorial stratosphere and the ocean’s equatorial deep jets being two examples. Explaining the formation of jets in stratified turbulence is a fundamental problem in geophysical fluid dynamics. Statistical state dynamics (SSD) provides powerful methods for analyzing turbulent systems exhibiting emergent organization, such as banded jets. In SSD, dynamical equations are written directly for the evolution of the turbulence statistics, enabling direct analysis of the statistical interactions between the incoherent component of turbulence and the coherent large-scale structure component that underlie jet formation. A second-order closure of SSD, known as S3T, has previously been applied to show that meridionally banded jets emerge in barotropic β-plane turbulence via a statistical instability referred to as the zonostrophic instability. Two-dimensional Boussinesq turbulence provides a simple model of nonrotating stratified turbulence analogous to the β-plane model of planetary turbulence. Jets known as vertically sheared horizontal flows (VSHFs) often emerge in simulations of Boussinesq turbulence, but their dynamics is not yet clearly understood. In this work S3T analysis of the zonostrophic instability is extended to study VSHF emergence in two-dimensional Boussinesq turbulence using an analytical formulation of S3T amenable to perturbation stability analysis. VSHFs are shown to form via an instability that is analogous in stratified turbulence to the zonostrophic instability in β-plane turbulence. This instability is shown to be strikingly similar to the zonostrophic instability, suggesting that jet emergence in both geostrophic and nonrotating stratified turbulence may be understood as instances of the same generic phenomenon.

Funder

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3