An Improved Double-Gaussian Closure for the Subgrid Vertical Velocity Probability Distribution Function

Author:

Fitch A. C.1

Affiliation:

1. Department of Meteorology, Stockholm University, Stockholm, Sweden, and Pacific Northwest National Laboratory, Richland, Washington, and Bolin Centre for Climate Research, Stockholm, Sweden

Abstract

Abstract The vertical velocity probability distribution function (PDF) is analyzed throughout the depth of the lower atmosphere, including the subcloud and cloud layers, in four large-eddy simulation (LES) cases of shallow cumulus and stratocumulus. Double-Gaussian PDF closures are examined to test their ability to represent a wide range of turbulence statistics, from stratocumulus cloud layers characterized by Gaussian turbulence to shallow cumulus cloud layers displaying strongly non-Gaussian turbulence statistics. While the majority of the model closures are found to perform well in the former case, the latter presents a considerable challenge. A new model closure is suggested that accounts for high skewness and kurtosis seen in shallow cumulus cloud layers. The well-established parabolic relationship between skewness and kurtosis is examined, with results in agreement with previous studies for the subcloud layer. In cumulus cloud layers, however, a modified relationship is necessary to improve performance. The new closure significantly improves the estimation of the vertical velocity PDF for shallow cumulus cloud layers, in addition to performing well for stratocumulus. In particular, the long updraft tail representing the bulk of cloudy points is much better represented and higher-order moments diagnosed from the PDF are also greatly improved. However, some deficiencies remain owing to fundamental limitations of representing highly non-Gaussian turbulence statistics with a double-Gaussian PDF.

Funder

Horizon 2020

Biological and Environmental Research

Bolin Centre for Climate Research

Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3