Mountain Volume Control on Deep-Convective Rain Amount during Episodes of Weak Synoptic Forcing

Author:

Imamovic Adel1ORCID,Schlemmer Linda1,Schär Christoph1

Affiliation:

1. Atmospheric and Climate Sciences, ETH Zürich, Zurich, Switzerland

Abstract

AbstractThermally driven upslope flows in mountainous areas provide favorable conditions for diurnal deep moist convection especially during episodes of weak synoptic forcing. The present study investigates the response of deep convection to axisymmetric orography as a function of orographic width and height by running ensembles of idealized convection-resolving simulations with a horizontal grid spacing of Δx = 1 km, full-physics parameterizations, and an interactive land surface. Deep convection is explicitly resolved and not parameterized. To cover a wide range of orographic scales, simulations are conducted with heights between 250 and 4000 m and widths between 5 and 30 km. The mountain slope strongly affects upslope wind speed characteristics, the timing and intensity of local updrafts, and local rain intensity. Although the day-to-day variability is substantial, the statistical-mean rain amount extracted by the mountain scales almost linearly with the mountain volume. Simulations with alternative mountain geometries, multiple peaks, and large-scale flow suggest that the linear scaling is valid for a surprisingly large portion of the parameter space. The scaling breaks down in the limit of relatively strong large-scale flows, sufficiently tall mountains, or elongated mountains. The existence of the simple linear scaling over such a wide range of configurations suggests that the response of thermally driven orographic deep convection over many mountainous areas is strongly affected by mountain volume. As a consequence, the rain amount is disproportionally dominated by the large horizontal scales of orography, as they contribute mostly to the mountain volume.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3