Axisymmetric Constraints on Cross-Equatorial Hadley Cell Extent

Author:

Hill Spencer A.1,Bordoni Simona2,Mitchell Jonathan L.3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, and Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

2. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California

3. Department of Earth, Planetary, and Space Sciences, and Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract We consider the relevance of known constraints from each of Hide’s theorem, the angular momentum–conserving (AMC) model, and the equal-area model on the extent of cross-equatorial Hadley cells. These theories respectively posit that a Hadley circulation must span all latitudes where the radiative–convective equilibrium (RCE) absolute angular momentum satisfies or or where the RCE absolute vorticity satisfies ; all latitudes where the RCE zonal wind exceeds the AMC zonal wind; and over a range such that depth-averaged potential temperature is continuous and that energy is conserved. The AMC model requires knowledge of the ascent latitude , which needs not equal the RCE forcing maximum latitude . Whatever the value of , we demonstrate that an AMC cell must extend at least as far into the winter hemisphere as the summer hemisphere. The equal-area model predicts , always placing it poleward of . As is moved poleward (at a given thermal Rossby number), the equal-area-predicted Hadley circulation becomes implausibly large, while both and become increasingly displaced poleward of the minimal cell extent based on Hide’s theorem (i.e., of supercritical forcing). In an idealized dry general circulation model, cross-equatorial Hadley cells are generated, some spanning nearly pole to pole. All homogenize angular momentum imperfectly, are roughly symmetric in extent about the equator, and appear in extent controlled by the span of supercritical forcing.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3