Secondary Ice Formation during Freezing of Levitated Droplets

Author:

Lauber Annika1,Kiselev Alexei1,Pander Thomas1,Handmann Patricia1,Leisner Thomas2

Affiliation:

1. Atmospheric Aerosol Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

2. Atmospheric Aerosol Research, Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, and Institut für Umweltphysik, Universität Heidelberg, Heidelberg, Germany

Abstract

Abstract The formation of secondary ice in clouds, that is, ice particles that are created at temperatures above the limit for homogeneous freezing without the direct involvement of a heterogeneous ice nucleus, is one of the longest-standing puzzles in cloud physics. Here, we present comprehensive laboratory investigations on the formation of small ice particles upon the freezing of drizzle-sized cloud droplets levitated in an electrodynamic balance. Four different categories of secondary ice formation (bubble bursting, jetting, cracking, and breakup) could be detected, and their respective frequencies of occurrence as a function of temperature and droplet size are given. We find that bubble bursting occurs more often than droplet splitting. While we do not observe the shattering of droplets into many large fragments, we find that the average number of small secondary ice particles released during freezing is strongly dependent on droplet size and may well exceed unity for droplets larger than 300 μm in diameter. This leaves droplet fragmentation as an important secondary ice process effective at temperatures around −10°C in clouds where large drizzle droplets are present.

Funder

Helmholtz-Gemeinschaft

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3