Cellular Statistical Models of Broken Cloud Fields. Part IV: Effects of Pixel Size on Idealized Satellite Observations

Author:

Alexandrov Mikhail D.1,Marshak Alexander2

Affiliation:

1. Department of Applied Physics and Applied Mathematics, Columbia University, and NASA Goddard Institute for Space Studies, New York, New York

2. NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract In the fourth part of our “Cellular Statistical Models of Broken Cloud Fields” series we use the binary Markov processes framework for quantitative investigation of the effects of low resolution of idealized satellite observations on the statistics of the retrieved cloud masks. We assume that the cloud fields are Markovian and are characterized by the “actual” cloud fraction (CF) and scale length. We use two different models of observations: a simple discrete-point sampling and a more realistic “pixel” protocol. The latter is characterized by a state attribution function (SAF), which has the meaning of the probability that the pixel with a certain CF is declared cloudy in the observed cloud mask. The stochasticity of the SAF means that the cloud–clear attribution is not ideal and can be affected by external or unknown factors. We show that the observed cloud masks can be accurately described as Markov chains of pixels and use the master matrix formalism (introduced in Part III of the series) for analytical computation of their parameters: the “observed” CF and scale length. This procedure allows us to establish a quantitative relationship (which is pixel-size dependent) between the actual and the observed cloud-field statistics. The feasibility of restoring the former from the latter is considered. The adequacy of our analytical approach to idealized observations is evaluated using numerical simulations. Comparison of the observed parameters of the simulated datasets with their theoretical expectations showed an agreement within 0.005 for the CF, while for the scale length it is within 1% in the sampling case and within 4% in the pixel case.

Funder

NASA

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3